Paper ID: 2204.10695
Universum-inspired Supervised Contrastive Learning
Aiyang Han, Chuanxing Geng, Songcan Chen
As an effective data augmentation method, Mixup synthesizes an extra amount of samples through linear interpolations. Despite its theoretical dependency on data properties, Mixup reportedly performs well as a regularizer and calibrator contributing reliable robustness and generalization to deep model training. In this paper, inspired by Universum Learning which uses out-of-class samples to assist the target tasks, we investigate Mixup from a largely under-explored perspective - the potential to generate in-domain samples that belong to none of the target classes, that is, universum. We find that in the framework of supervised contrastive learning, Mixup-induced universum can serve as surprisingly high-quality hard negatives, greatly relieving the need for large batch sizes in contrastive learning. With these findings, we propose Universum-inspired supervised Contrastive learning (UniCon), which incorporates Mixup strategy to generate Mixup-induced universum as universum negatives and pushes them apart from anchor samples of the target classes. We extend our method to the unsupervised setting, proposing Unsupervised Universum-inspired contrastive model (Un-Uni). Our approach not only improves Mixup with hard labels, but also innovates a novel measure to generate universum data. With a linear classifier on the learned representations, UniCon shows state-of-the-art performance on various datasets. Specially, UniCon achieves 81.7% top-1 accuracy on CIFAR-100, surpassing the state of art by a significant margin of 5.2% with a much smaller batch size, typically, 256 in UniCon vs. 1024 in SupCon using ResNet-50. Un-Uni also outperforms SOTA methods on CIFAR-100. The code of this paper is released on https://github.com/hannaiiyanggit/UniCon.
Submitted: Apr 22, 2022