Paper ID: 2204.11964

SceneTrilogy: On Human Scene-Sketch and its Complementarity with Photo and Text

Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, Yi-Zhe Song

In this paper, we extend scene understanding to include that of human sketch. The result is a complete trilogy of scene representation from three diverse and complementary modalities -- sketch, photo, and text. Instead of learning a rigid three-way embedding and be done with it, we focus on learning a flexible joint embedding that fully supports the ``optionality" that this complementarity brings. Our embedding supports optionality on two axes: (i) optionality across modalities -- use any combination of modalities as query for downstream tasks like retrieval, (ii) optionality across tasks -- simultaneously utilising the embedding for either discriminative (e.g., retrieval) or generative tasks (e.g., captioning). This provides flexibility to end-users by exploiting the best of each modality, therefore serving the very purpose behind our proposal of a trilogy in the first place. First, a combination of information-bottleneck and conditional invertible neural networks disentangle the modality-specific component from modality-agnostic in sketch, photo, and text. Second, the modality-agnostic instances from sketch, photo, and text are synergised using a modified cross-attention. Once learned, we show our embedding can accommodate a multi-facet of scene-related tasks, including those enabled for the first time by the inclusion of sketch, all without any task-specific modifications. Project Page: \url{http://www.pinakinathc.me/scenetrilogy}

Submitted: Apr 25, 2022