Paper ID: 2204.12440
neuro2vec: Masked Fourier Spectrum Prediction for Neurophysiological Representation Learning
Di Wu, Siyuan Li, Jie Yang, Mohamad Sawan
Extensive data labeling on neurophysiological signals is often prohibitively expensive or impractical, as it may require particular infrastructure or domain expertise. To address the appetite for data of deep learning methods, we present for the first time a Fourier-based modeling framework for self-supervised pre-training of neurophysiology signals. The intuition behind our approach is simple: frequency and phase distribution of neurophysiology signals reveal the underlying neurophysiological activities of the brain and muscle. Our approach first randomly masks out a portion of the input signal and then predicts the missing information from either spatiotemporal or the Fourier domain. Pre-trained models can be potentially used for downstream tasks such as sleep stage classification using electroencephalogram (EEG) signals and gesture recognition using electromyography (EMG) signals. Unlike contrastive-based methods, which strongly rely on carefully hand-crafted augmentations and siamese structure, our approach works reasonably well with a simple transformer encoder with no augmentation requirements. By evaluating our method on several benchmark datasets, including both EEG and EMG, we show that our modeling approach improves downstream neurophysiological related tasks by a large margin.
Submitted: Apr 20, 2022