Paper ID: 2204.13483
TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving
Lianqing Zheng, Zhixiong Ma, Xichan Zhu, Bin Tan, Sen Li, Kai Long, Weiqi Sun, Sihan Chen, Lu Zhang, Mengyue Wan, Libo Huang, Jie Bai
The next-generation high-resolution automotive radar (4D radar) can provide additional elevation measurement and denser point clouds, which has great potential for 3D sensing in autonomous driving. In this paper, we introduce a dataset named TJ4DRadSet with 4D radar points for autonomous driving research. The dataset was collected in various driving scenarios, with a total of 7757 synchronized frames in 44 consecutive sequences, which are well annotated with 3D bounding boxes and track ids. We provide a 4D radar-based 3D object detection baseline for our dataset to demonstrate the effectiveness of deep learning methods for 4D radar point clouds. The dataset can be accessed via the following link: https://github.com/TJRadarLab/TJ4DRadSet.
Submitted: Apr 28, 2022