Paper ID: 2205.01727

How to choose features to improve prediction performance in lane-changing intention: A meta-analysis

Ruifeng Gu

Lane-change is a fundamental driving behavior and highly associated with various types of collisions, such as rear-end collisions, sideswipe collisions, and angle collisions and the increased risk of a traffic crash. This study investigates effectiveness of different features categories combination in lane-changing intention prediction. Studies related to lane-changing intention prediction have been selected followed by strict standards. Then the meta-analysis was employed to not only evaluate the effectiveness of different features categories combination in lane-changing intention but also capture heterogeneity, effect size combination, and publication bias. According to the meta-analysis and reviewed research papers, results indicate that using input features from different types can lead to different performances. And vehicle input type has a better performance in lane-changing intention, prediction, compared with environment or even driver combination input type. Finally, some potential future research directions are proposed based on the findings of the paper.

Submitted: May 3, 2022