Paper ID: 2205.02289

A Dataset for N-ary Relation Extraction of Drug Combinations

Aryeh Tiktinsky, Vijay Viswanathan, Danna Niezni, Dana Meron Azagury, Yosi Shamay, Hillel Taub-Tabib, Tom Hope, Yoav Goldberg

Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.

Submitted: May 4, 2022