Paper ID: 2205.04603
Deep Learning Enabled Semantic Communications with Speech Recognition and Synthesis
Zhenzi Weng, Zhijin Qin, Xiaoming Tao, Chengkang Pan, Guangyi Liu, Geoffrey Ye Li
In this paper, we develop a deep learning based semantic communication system for speech transmission, named DeepSC-ST. We take the speech recognition and speech synthesis as the transmission tasks of the communication system, respectively. First, the speech recognition-related semantic features are extracted for transmission by a joint semantic-channel encoder and the text is recovered at the receiver based on the received semantic features, which significantly reduces the required amount of data transmission without performance degradation. Then, we perform speech synthesis at the receiver, which dedicates to re-generate the speech signals by feeding the recognized text and the speaker information into a neural network module. To enable the DeepSC-ST adaptive to dynamic channel environments, we identify a robust model to cope with different channel conditions. According to the simulation results, the proposed DeepSC-ST significantly outperforms conventional communication systems and existing DL-enabled communication systems, especially in the low signal-to-noise ratio (SNR) regime. A software demonstration is further developed as a proof-of-concept of the DeepSC-ST.
Submitted: May 9, 2022