Paper ID: 2205.05710

A Deep Learning Approach for Predicting Two-dimensional Soil Consolidation Using Physics-Informed Neural Networks (PINN)

Yue Lu, Gang Mei, Francesco Piccialli

Soil consolidation is closely related to seepage, stability, and settlement of geotechnical buildings and foundations, and directly affects the use and safety of superstructures. Nowadays, the unidirectional consolidation theory of soils is widely used in certain conditions and approximate calculations. The multi-directional theory of soil consolidation is more reasonable than the unidirectional theory in practical applications, but it is much more complicated in terms of index determination and solution. To address the above problem, in this paper, we propose a deep learning method using physics-informed neural networks (PINN) to predict the excess pore water pressure of two-dimensional soil consolidation. In the proposed method, (1) a fully connected neural network is constructed, (2) the computational domain, partial differential equation (PDE), and constraints are defined to generate data for model training, and (3) the PDE of two-dimensional soil consolidation and the model of the neural network is connected to reduce the loss of the model. The effectiveness of the proposed method is verified by comparison with the numerical solution of PDE for two-dimensional consolidation. Using this method, the excess pore water pressure could be predicted simply and efficiently. In addition, the method was applied to predict the soil excess pore water pressure in the foundation in a real case at Tianjin port, China. The proposed deep learning approach can be used to investigate the large and complex multi-directional soil consolidation.

Submitted: Apr 9, 2022