Paper ID: 2205.06547
Uninorm-like parametric activation functions for human-understandable neural models
Orsolya Csiszár, Luca Sára Pusztaházi, Lehel Dénes-Fazakas, Michael S. Gashler, Vladik Kreinovich, Gábor Csiszár
We present a deep learning model for finding human-understandable connections between input features. Our approach uses a parameterized, differentiable activation function, based on the theoretical background of nilpotent fuzzy logic and multi-criteria decision-making (MCDM). The learnable parameter has a semantic meaning indicating the level of compensation between input features. The neural network determines the parameters using gradient descent to find human-understandable relationships between input features. We demonstrate the utility and effectiveness of the model by successfully applying it to classification problems from the UCI Machine Learning Repository.
Submitted: May 13, 2022