Paper ID: 2205.08265

A two-steps approach to improve the performance of Android malware detectors

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein

The popularity of Android OS has made it an appealing target to malware developers. To evade detection, including by ML-based techniques, attackers invest in creating malware that closely resemble legitimate apps. In this paper, we propose GUIDED RETRAINING, a supervised representation learning-based method that boosts the performance of a malware detector. First, the dataset is split into "easy" and "difficult" samples, where difficulty is associated to the prediction probabilities yielded by a malware detector: for difficult samples, the probabilities are such that the classifier is not confident on the predictions, which have high error rates. Then, we apply our GUIDED RETRAINING method on the difficult samples to improve their classification. For the subset of "easy" samples, the base malware detector is used to make the final predictions since the error rate on that subset is low by construction. For the subset of "difficult" samples, we rely on GUIDED RETRAINING, which leverages the correct predictions and the errors made by the base malware detector to guide the retraining process. GUIDED RETRAINING focuses on the difficult samples: it learns new embeddings of these samples using Supervised Contrastive Learning and trains an auxiliary classifier for the final predictions. We validate our method on four state-of-the-art Android malware detection approaches using over 265k malware and benign apps, and we demonstrate that GUIDED RETRAINING can reduce up to 40.41% prediction errors made by the malware detectors. Our method is generic and designed to enhance the classification performance on a binary classification task. Consequently, it can be applied to other classification problems beyond Android malware detection.

Submitted: May 17, 2022