Paper ID: 2205.08608
All-Photonic Artificial Neural Network Processor Via Non-linear Optics
Jasvith Raj Basani, Mikkel Heuck, Dirk R. Englund, Stefan Krastanov
Optics and photonics has recently captured interest as a platform to accelerate linear matrix processing, that has been deemed as a bottleneck in traditional digital electronic architectures. In this paper, we propose an all-photonic artificial neural network processor wherein information is encoded in the amplitudes of frequency modes that act as neurons. The weights among connected layers are encoded in the amplitude of controlled frequency modes that act as pumps. Interaction among these modes for information processing is enabled by non-linear optical processes. Both the matrix multiplication and element-wise activation functions are performed through coherent processes, enabling the direct representation of negative and complex numbers without the use of detectors or digital electronics. Via numerical simulations, we show that our design achieves a performance commensurate with present-day state-of-the-art computational networks on image-classification benchmarks. Our architecture is unique in providing a completely unitary, reversible mode of computation. Additionally, the computational speed increases with the power of the pumps to arbitrarily high rates, as long as the circuitry can sustain the higher optical power.
Submitted: May 17, 2022