Paper ID: 2205.10138
Reliability-based Mesh-to-Grid Image Reconstruction
Ján Koloda, Jürgen Seiler, André Kaup
This paper presents a novel method for the reconstruction of images from samples located at non-integer positions, called mesh. This is a common scenario for many image processing applications, such as super-resolution, warping or virtual view generation in multi-camera systems. The proposed method relies on a set of initial estimates that are later refined by a new reliability-based content-adaptive framework that employs denoising in order to reduce the reconstruction error. The reliability of the initial estimate is computed so stronger denoising is applied to less reliable estimates. The proposed technique can improve the reconstruction quality by more than 2 dB (in terms of PSNR) with respect to the initial estimate and it outperforms the state-of-the-art denoising-based refinement by up to 0.7 dB.
Submitted: May 20, 2022