Paper ID: 2205.10401
NeuralEcho: A Self-Attentive Recurrent Neural Network For Unified Acoustic Echo Suppression And Speech Enhancement
Meng Yu, Yong Xu, Chunlei Zhang, Shi-Xiong Zhang, Dong Yu
Acoustic echo cancellation (AEC) plays an important role in the full-duplex speech communication as well as the front-end speech enhancement for recognition in the conditions when the loudspeaker plays back. In this paper, we present an all-deep-learning framework that implicitly estimates the second order statistics of echo/noise and target speech, and jointly solves echo and noise suppression through an attention based recurrent neural network. The proposed model outperforms the state-of-the-art joint echo cancellation and speech enhancement method F-T-LSTM in terms of objective speech quality metrics, speech recognition accuracy and model complexity. We show that this model can work with speaker embedding for better target speech enhancement and furthermore develop a branch for automatic gain control (AGC) task to form an all-in-one front-end speech enhancement system.
Submitted: May 20, 2022