Paper ID: 2205.10492
Theoretically Accurate Regularization Technique for Matrix Factorization based Recommender Systems
Hao Wang
Regularization is a popular technique to solve the overfitting problem of machine learning algorithms. Most regularization technique relies on parameter selection of the regularization coefficient. Plug-in method and cross-validation approach are two most common parameter selection approaches for regression methods such as Ridge Regression, Lasso Regression and Kernel Regression. Matrix factorization based recommendation system also has heavy reliance on the regularization technique. Most people select a single scalar value to regularize the user feature vector and item feature vector independently or collectively. In this paper, we prove that such approach of selecting regularization coefficient is invalid, and we provide a theoretically accurate method that outperforms the most widely used approach in both accuracy and fairness metrics.
Submitted: May 21, 2022