Paper ID: 2205.11142
Stability of the scattering transform for deformations with minimal regularity
Fabio Nicola, S. Ivan Trapasso
Within the mathematical analysis of deep convolutional neural networks, the wavelet scattering transform introduced by St\'ephane Mallat is a unique example of how the ideas of multiscale analysis can be combined with a cascade of modulus nonlinearities to build a nonexpansive, translation invariant signal representation with provable geometric stability properties, namely Lipschitz continuity to the action of small $C^2$ diffeomorphisms - a remarkable result for both theoretical and practical purposes, inherently depending on the choice of the filters and their arrangement into a hierarchical architecture. In this note, we further investigate the intimate relationship between the scattering structure and the regularity of the deformation in the H\"older regularity scale $C^\alpha$, $\alpha >0$. We are able to precisely identify the stability threshold, proving that stability is still achievable for deformations of class $C^{\alpha}$, $\alpha>1$, whereas instability phenomena can occur at lower regularity levels modelled by $C^\alpha$, $0\le \alpha <1$. While the behaviour at the threshold given by Lipschitz (or even $C^1$) regularity remains beyond reach, we are able to prove a stability bound in that case, up to $\varepsilon$ losses.
Submitted: May 23, 2022