Paper ID: 2205.11197

Feature-Distribution Perturbation and Calibration for Generalized Person ReID

Qilei Li, Jiabo Huang, Jian Hu, Shaogang Gong

Person Re-identification (ReID) has been advanced remarkably over the last 10 years along with the rapid development of deep learning for visual recognition. However, the i.i.d. (independent and identically distributed) assumption commonly held in most deep learning models is somewhat non-applicable to ReID considering its objective to identify images of the same pedestrian across cameras at different locations often of variable and independent domain characteristics that are also subject to view-biased data distribution. In this work, we propose a Feature-Distribution Perturbation and Calibration (PECA) method to derive generic feature representations for person ReID, which is not only discriminative across cameras but also agnostic and deployable to arbitrary unseen target domains. Specifically, we perform per-domain feature-distribution perturbation to refrain the model from overfitting to the domain-biased distribution of each source (seen) domain by enforcing feature invariance to distribution shifts caused by perturbation. Furthermore, we design a global calibration mechanism to align feature distributions across all the source domains to improve the model generalization capacity by eliminating domain bias. These local perturbation and global calibration are conducted simultaneously, which share the same principle to avoid models overfitting by regularization respectively on the perturbed and the original distributions. Extensive experiments were conducted on eight person ReID datasets and the proposed PECA model outperformed the state-of-the-art competitors by significant margins.

Submitted: May 23, 2022