Paper ID: 2205.11771
Learning Context-Aware Service Representation for Service Recommendation in Workflow Composition
Xihao Xie, Jia Zhang, Rahul Ramachandran, Tsengdar J. Lee, Seungwon Lee
As increasingly more software services have been published onto the Internet, it remains a significant challenge to recommend suitable services to facilitate scientific workflow composition. This paper proposes a novel NLP-inspired approach to recommending services throughout a workflow development process, based on incrementally learning latent service representation from workflow provenance. A workflow composition process is formalized as a step-wise, context-aware service generation procedure, which is mapped to next-word prediction in a natural language sentence. Historical service dependencies are extracted from workflow provenance to build and enrich a knowledge graph. Each path in the knowledge graph reflects a scenario in a data analytics experiment, which is analogous to a sentence in a conversation. All paths are thus formalized as composable service sequences and are mined, using various patterns, from the established knowledge graph to construct a corpus. Service embeddings are then learned by applying deep learning model from the NLP field. Extensive experiments on the real-world dataset demonstrate the effectiveness and efficiency of the approach.
Submitted: May 24, 2022