Paper ID: 2205.12318
ColdGuess: A General and Effective Relational Graph Convolutional Network to Tackle Cold Start Cases
Bo He, Xiang Song, Vincent Gao, Christos Faloutsos
Low-quality listings and bad actor behavior in online retail websites threatens e-commerce business as these result in sub-optimal buying experience and erode customer trust. When a new listing is created, how to tell it has good-quality? Is the method effective, fast, and scalable? Previous approaches often have three limitations/challenges: (1) unable to handle cold start problems where new sellers/listings lack sufficient selling histories. (2) inability of scoring hundreds of millions of listings at scale, or compromise performance for scalability. (3) has space challenges from large-scale graph with giant e-commerce business size. To overcome these limitations/challenges, we proposed ColdGuess, an inductive graph-based risk predictor built upon a heterogeneous seller product graph, which effectively identifies risky seller/product/listings at scale. ColdGuess tackles the large-scale graph by consolidated nodes, and addresses the cold start problems using homogeneous influence1. The evaluation on real data demonstrates that ColdGuess has stable performance as the number of unknown features increases. It outperforms the lightgbm2 by up to 34 pcp ROC-AUC in a cold start case when a new seller sells a new product . The resulting system, ColdGuess, is effective, adaptable to changing risky seller behavior, and is already in production
Submitted: May 24, 2022