Paper ID: 2205.12391

Toward Understanding Bias Correlations for Mitigation in NLP

Lu Cheng, Suyu Ge, Huan Liu

Natural Language Processing (NLP) models have been found discriminative against groups of different social identities such as gender and race. With the negative consequences of these undesired biases, researchers have responded with unprecedented effort and proposed promising approaches for bias mitigation. In spite of considerable practical importance, current algorithmic fairness literature lacks an in-depth understanding of the relations between different forms of biases. Social bias is complex by nature. Numerous studies in social psychology identify the "generalized prejudice", i.e., generalized devaluing sentiments across different groups. For example, people who devalue ethnic minorities are also likely to devalue women and gays. Therefore, this work aims to provide a first systematic study toward understanding bias correlations in mitigation. In particular, we examine bias mitigation in two common NLP tasks -- toxicity detection and word embeddings -- on three social identities, i.e., race, gender, and religion. Our findings suggest that biases are correlated and present scenarios in which independent debiasing approaches dominant in current literature may be insufficient. We further investigate whether jointly mitigating correlated biases is more desired than independent and individual debiasing. Lastly, we shed light on the inherent issue of debiasing-accuracy trade-off in bias mitigation. This study serves to motivate future research on joint bias mitigation that accounts for correlated biases.

Submitted: May 24, 2022