Paper ID: 2205.12412
Differentially Private AUC Computation in Vertical Federated Learning
Jiankai Sun, Xin Yang, Yuanshun Yao, Junyuan Xie, Di Wu, Chong Wang
Federated learning has gained great attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple parties. As a sub-category, vertical federated learning (vFL) focuses on the scenario where features and labels are split into different parties. The prior work on vFL has mostly studied how to protect label privacy during model training. However, model evaluation in vFL might also lead to potential leakage of private label information. One mitigation strategy is to apply label differential privacy (DP) but it gives bad estimations of the true (non-private) metrics. In this work, we propose two evaluation algorithms that can more accurately compute the widely used AUC (area under curve) metric when using label DP in vFL. Through extensive experiments, we show our algorithms can achieve more accurate AUCs compared to the baselines.
Submitted: May 24, 2022