Paper ID: 2205.14128
Meta-Learning Adversarial Bandits
Maria-Florina Balcan, Keegan Harris, Mikhail Khodak, Zhiwei Steven Wu
We study online learning with bandit feedback across multiple tasks, with the goal of improving average performance across tasks if they are similar according to some natural task-similarity measure. As the first to target the adversarial setting, we design a unified meta-algorithm that yields setting-specific guarantees for two important cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the meta-algorithm tunes the initialization, step-size, and entropy parameter of the Tsallis-entropy generalization of the well-known Exp3 method, with the task-averaged regret provably improving if the entropy of the distribution over estimated optima-in-hindsight is small. For BLO, we learn the initialization, step-size, and boundary-offset of online mirror descent (OMD) with self-concordant barrier regularizers, showing that task-averaged regret varies directly with a measure induced by these functions on the interior of the action space. Our adaptive guarantees rely on proving that unregularized follow-the-leader combined with multiplicative weights is enough to online learn a non-smooth and non-convex sequence of affine functions of Bregman divergences that upper-bound the regret of OMD.
Submitted: May 27, 2022