Paper ID: 2205.14748

Learning as Conversation: Dialogue Systems Reinforced for Information Acquisition

Pengshan Cai, Hui Wan, Fei Liu, Mo Yu, Hong Yu, Sachindra Joshi

We propose novel AI-empowered chat bots for learning as conversation where a user does not read a passage but gains information and knowledge through conversation with a teacher bot. Our information-acquisition-oriented dialogue system employs a novel adaptation of reinforced self-play so that the system can be transferred to various domains without in-domain dialogue data, and can carry out conversations both informative and attentive to users. Our extensive subjective and objective evaluations on three large public data corpora demonstrate the effectiveness of our system to deliver knowledge-intensive and attentive conversations and help end users substantially gain knowledge without reading passages. Our code and datasets are publicly available for follow-up research.

Submitted: May 29, 2022