Paper ID: 2205.15280
Testing for Geometric Invariance and Equivariance
Louis G. Christie, John A. D. Aston
Invariant and equivariant models incorporate the symmetry of an object to be estimated (here non-parametric regression functions $f : \mathcal{X} \rightarrow \mathbb{R}$). These models perform better (with respect to $L^2$ loss) and are increasingly being used in practice, but encounter problems when the symmetry is falsely assumed. In this paper we present a framework for testing for $G$-equivariance for any semi-group $G$. This will give confidence to the use of such models when the symmetry is not known a priori. These tests are independent of the model and are computationally quick, so can be easily used before model fitting to test their validity.
Submitted: May 30, 2022