Paper ID: 2205.15286
Robust and accelerated single-spike spiking neural network training with applicability to challenging temporal tasks
Luke Taylor, Andrew King, Nicol Harper
Spiking neural networks (SNNs), particularly the single-spike variant in which neurons spike at most once, are considerably more energy efficient than standard artificial neural networks (ANNs). However, single-spike SSNs are difficult to train due to their dynamic and non-differentiable nature, where current solutions are either slow or suffer from training instabilities. These networks have also been critiqued for their limited computational applicability such as being unsuitable for time-series datasets. We propose a new model for training single-spike SNNs which mitigates the aforementioned training issues and obtains competitive results across various image and neuromorphic datasets, with up to a $13.98\times$ training speedup and up to an $81\%$ reduction in spikes compared to the multi-spike SNN. Notably, our model performs on par with multi-spike SNNs in challenging tasks involving neuromorphic time-series datasets, demonstrating a broader computational role for single-spike SNNs than previously believed.
Submitted: May 30, 2022