Paper ID: 2206.00359
DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep Neural Networks
Dong Huang, Ding-Hua Chen, Xiangji Chen, Chang-Dong Wang, Jian-Huang Lai
Deep clustering has recently emerged as a promising technique for complex data clustering. Despite the considerable progress, previous deep clustering works mostly build or learn the final clustering by only utilizing a single layer of representation, e.g., by performing the K-means clustering on the last fully-connected layer or by associating some clustering loss to a specific layer, which neglect the possibilities of jointly leveraging multi-layer representations for enhancing the deep clustering performance. In view of this, this paper presents a Deep Clustering via Ensembles (DeepCluE) approach, which bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks. In particular, we utilize a weight-sharing convolutional neural network as the backbone, which is trained with both the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector) in an unsupervised manner. Thereafter, multiple layers of feature representations are extracted from the trained network, upon which the ensemble clustering process is further conducted. Specifically, a set of diversified base clusterings are generated from the multi-layer representations via a highly efficient clusterer. Then the reliability of clusters in multiple base clusterings is automatically estimated by exploiting an entropy-based criterion, based on which the set of base clusterings are re-formulated into a weighted-cluster bipartite graph. By partitioning this bipartite graph via transfer cut, the final consensus clustering can be obtained. Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
Submitted: Jun 1, 2022