Paper ID: 2206.00798
Multi-scale frequency separation network for image deblurring
Yanni Zhang, Qiang Li, Miao Qi, Di Liu, Jun Kong, Jianzhong Wang
Image deblurring aims to restore the detailed texture information or structures from blurry images, which has become an indispensable step in many computer vision tasks. Although various methods have been proposed to deal with the image deblurring problem, most of them treated the blurry image as a whole and neglected the characteristics of different image frequencies. In this paper, we present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring. MSFS-Net introduces the frequency separation module (FSM) into an encoder-decoder network architecture to capture the low- and high-frequency information of image at multiple scales. Then, a cycle-consistency strategy and a contrastive learning module (CLM) are respectively designed to retain the low-frequency information and recover the high-frequency information during deblurring. At last, the features of different scales are fused by a cross-scale feature fusion module (CSFFM). Extensive experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
Submitted: Jun 1, 2022