Paper ID: 2206.01382

Falconn++: A Locality-sensitive Filtering Approach for Approximate Nearest Neighbor Search

Ninh Pham, Tao Liu

We present Falconn++, a novel locality-sensitive filtering approach for approximate nearest neighbor search on angular distance. Falconn++ can filter out potential far away points in any hash bucket \textit{before} querying, which results in higher quality candidates compared to other hashing-based solutions. Theoretically, Falconn++ asymptotically achieves lower query time complexity than Falconn, an optimal locality-sensitive hashing scheme on angular distance. Empirically, Falconn++ achieves higher recall-speed tradeoffs than Falconn on many real-world data sets. Falconn++ is also competitive with HNSW, an efficient representative of graph-based solutions on high search recall regimes.

Submitted: Jun 3, 2022