Paper ID: 2206.01962
Formal Specifications from Natural Language
Christopher Hahn, Frederik Schmitt, Julia J. Tillman, Niklas Metzger, Julian Siber, Bernd Finkbeiner
We study the generalization abilities of language models when translating natural language into formal specifications with complex semantics. In particular, we fine-tune language models on three datasets consisting of English sentences and their corresponding formal representation: 1) regular expressions (regex), frequently used in programming and search; 2) First-order logic (FOL), commonly used in software verification and theorem proving; and 3) linear-time temporal logic (LTL), which forms the basis for industrial hardware specification languages. Our experiments show that, in these diverse domains, the language models maintain their generalization capabilities from pre-trained knowledge of natural language to generalize, e.g., to new variable names or operator descriptions. Additionally, they achieve competitive performance, and even outperform the state-of-the-art for translating into regular expressions, with the benefits of being easy to access, efficient to fine-tune, and without a particular need for domain-specific reasoning.
Submitted: Jun 4, 2022