Paper ID: 2206.02327
JigsawHSI: a network for Hyperspectral Image classification
Jaime Moraga, H. Sebnem Duzgun
This article describes Jigsaw, a convolutional neural network (CNN) used in geosciences and based on Inception but tailored for geoscientific analyses. Introduces JigsawHSI (based on Jigsaw) and uses it on the land-use land-cover (LULC) classification problem with the Indian Pines, Pavia University and Salinas hyperspectral image data sets. The network is compared against HybridSN, a spectral-spatial 3D-CNN followed by 2D-CNN that achieves state-of-the-art results on the datasets. This short article proves that JigsawHSI is able to meet or exceed HybridSN's performance in all three cases. Additionally, the use of jigsaw in geosciences is highlighted, while the code and toolkit are made available.
Submitted: Jun 6, 2022