Paper ID: 2206.03128

Spatial-Temporal Adaptive Graph Convolution with Attention Network for Traffic Forecasting

Chen Weikang, Li Yawen, Xue Zhe, Li Ang, Wu Guobin

Traffic forecasting is one canonical example of spatial-temporal learning task in Intelligent Traffic System. Existing approaches capture spatial dependency with a pre-determined matrix in graph convolution neural operators. However, the explicit graph structure losses some hidden representations of relationships among nodes. Furthermore, traditional graph convolution neural operators cannot aggregate long-range nodes on the graph. To overcome these limits, we propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting. Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes. Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block. What's more, a stacked dilated 1D convolution, with efficiency in long-term prediction, is adopted in our temporal block for capturing the different time series. We evaluate our STAAN on two real-world datasets, and experiments validate that our model outperforms state-of-the-art baselines.

Submitted: Jun 7, 2022