Paper ID: 2206.04783
ReFace: Real-time Adversarial Attacks on Face Recognition Systems
Shehzeen Hussain, Todd Huster, Chris Mesterharm, Paarth Neekhara, Kevin An, Malhar Jere, Harshvardhan Sikka, Farinaz Koushanfar
Deep neural network based face recognition models have been shown to be vulnerable to adversarial examples. However, many of the past attacks require the adversary to solve an input-dependent optimization problem using gradient descent which makes the attack impractical in real-time. These adversarial examples are also tightly coupled to the attacked model and are not as successful in transferring to different models. In this work, we propose ReFace, a real-time, highly-transferable attack on face recognition models based on Adversarial Transformation Networks (ATNs). ATNs model adversarial example generation as a feed-forward neural network. We find that the white-box attack success rate of a pure U-Net ATN falls substantially short of gradient-based attacks like PGD on large face recognition datasets. We therefore propose a new architecture for ATNs that closes this gap while maintaining a 10000x speedup over PGD. Furthermore, we find that at a given perturbation magnitude, our ATN adversarial perturbations are more effective in transferring to new face recognition models than PGD. ReFace attacks can successfully deceive commercial face recognition services in a transfer attack setting and reduce face identification accuracy from 82% to 16.4% for AWS SearchFaces API and Azure face verification accuracy from 91% to 50.1%.
Submitted: Jun 9, 2022