Paper ID: 2206.05070
Fundamental Limits in Formal Verification of Message-Passing Neural Networks
Marco Sälzer, Martin Lange
Output reachability and adversarial robustness are among the most relevant safety properties of neural networks. We show that in the context of Message Passing Neural Networks (MPNN), a common Graph Neural Network (GNN) model, formal verification is impossible. In particular, we show that output reachability of graph-classifier MPNN, working over graphs of unbounded size, non-trivial degree and sufficiently expressive node labels, cannot be verified formally: there is no algorithm that answers correctly (with yes or no), given an MPNN, whether there exists some valid input to the MPNN such that the corresponding output satisfies a given specification. However, we also show that output reachability and adversarial robustness of node-classifier MPNN can be verified formally when a limit on the degree of input graphs is given a priori. We discuss the implications of these results, for the purpose of obtaining a complete picture of the principle possibility to formally verify GNN, depending on the expressiveness of the involved GNN models and input-output specifications.
Submitted: Jun 10, 2022