Paper ID: 2206.06359
EnergyMatch: Energy-based Pseudo-Labeling for Semi-Supervised Learning
Zhuoran Yu, Yin Li, Yong Jae Lee
Recent state-of-the-art methods in semi-supervised learning (SSL) combine consistency regularization with confidence-based pseudo-labeling. To obtain high-quality pseudo-labels, a high confidence threshold is typically adopted. However, it has been shown that softmax-based confidence scores in deep networks can be arbitrarily high for samples far from the training data, and thus, the pseudo-labels for even high-confidence unlabeled samples may still be unreliable. In this work, we present a new perspective of pseudo-labeling: instead of relying on model confidence, we instead measure whether an unlabeled sample is likely to be "in-distribution"; i.e., close to the current training data. To classify whether an unlabeled sample is "in-distribution" or "out-of-distribution", we adopt the energy score from out-of-distribution detection literature. As training progresses and more unlabeled samples become in-distribution and contribute to training, the combined labeled and pseudo-labeled data can better approximate the true distribution to improve the model. Experiments demonstrate that our energy-based pseudo-labeling method, albeit conceptually simple, significantly outperforms confidence-based methods on imbalanced SSL benchmarks, and achieves competitive performance on class-balanced data. For example, it produces a 4-6% absolute accuracy improvement on CIFAR10-LT when the imbalance ratio is higher than 50. When combined with state-of-the-art long-tailed SSL methods, further improvements are attained.
Submitted: Jun 13, 2022