Paper ID: 2206.08568

Multi-Contextual Predictions with Vision Transformer for Video Anomaly Detection

Joo-Yeon Lee, Woo-Jeoung Nam, Seong-Whan Lee

Video Anomaly Detection(VAD) has been traditionally tackled in two main methodologies: the reconstruction-based approach and the prediction-based one. As the reconstruction-based methods learn to generalize the input image, the model merely learns an identity function and strongly causes the problem called generalizing issue. On the other hand, since the prediction-based ones learn to predict a future frame given several previous frames, they are less sensitive to the generalizing issue. However, it is still uncertain if the model can learn the spatio-temporal context of a video. Our intuition is that the understanding of the spatio-temporal context of a video plays a vital role in VAD as it provides precise information on how the appearance of an event in a video clip changes. Hence, to fully exploit the context information for anomaly detection in video circumstances, we designed the transformer model with three different contextual prediction streams: masked, whole and partial. By learning to predict the missing frames of consecutive normal frames, our model can effectively learn various normality patterns in the video, which leads to a high reconstruction error at the abnormal cases that are unsuitable to the learned context. To verify the effectiveness of our approach, we assess our model on the public benchmark datasets: USCD Pedestrian 2, CUHK Avenue and ShanghaiTech and evaluate the performance with the anomaly score metric of reconstruction error. The results demonstrate that our proposed approach achieves a competitive performance compared to the existing video anomaly detection methods.

Submitted: Jun 17, 2022