Paper ID: 2206.09506

Log-GPIS-MOP: A Unified Representation for Mapping, Odometry and Planning

Lan Wu, Ki Myung Brian Lee, Cedric Le Gentil, Teresa Vidal-Calleja

Whereas dedicated scene representations are required for each different task in conventional robotic systems, this paper demonstrates that a unified representation can be used directly for multiple key tasks. We propose the Log-Gaussian Process Implicit Surface for Mapping, Odometry and Planning (Log-GPIS-MOP): a probabilistic framework for surface reconstruction, localisation and navigation based on a unified representation. Our framework applies a logarithmic transformation to a Gaussian Process Implicit Surface (GPIS) formulation to recover a global representation that accurately captures the Euclidean distance field with gradients and, at the same time, the implicit surface. By directly estimating the distance field and its gradient through Log-GPIS inference, the proposed incremental odometry technique computes the optimal alignment of an incoming frame and fuses it globally to produce a map. Concurrently, an optimisation-based planner computes a safe collision-free path using the same Log-GPIS surface representation. We validate the proposed framework on simulated and real datasets in 2D and 3D and benchmark against the state-of-the-art approaches. Our experiments show that Log-GPIS-MOP produces competitive results in sequential odometry, surface mapping and obstacle avoidance.

Submitted: Jun 19, 2022