Paper ID: 2206.10875

Guided Diffusion Model for Adversarial Purification from Random Noise

Quanlin Wu, Hang Ye, Yuntian Gu

In this paper, we propose a novel guided diffusion purification approach to provide a strong defense against adversarial attacks. Our model achieves 89.62% robust accuracy under PGD-L_inf attack (eps = 8/255) on the CIFAR-10 dataset. We first explore the essential correlations between unguided diffusion models and randomized smoothing, enabling us to apply the models to certified robustness. The empirical results show that our models outperform randomized smoothing by 5% when the certified L2 radius r is larger than 0.5.

Submitted: Jun 22, 2022