Paper ID: 2206.10923
FairGrad: Fairness Aware Gradient Descent
Gaurav Maheshwari, Michaël Perrot
We address the problem of group fairness in classification, where the objective is to learn models that do not unjustly discriminate against subgroups of the population. Most existing approaches are limited to simple binary tasks or involve difficult to implement training mechanisms which reduces their practical applicability. In this paper, we propose FairGrad, a method to enforce fairness based on a re-weighting scheme that iteratively learns group specific weights based on whether they are advantaged or not. FairGrad is easy to implement, accommodates various standard fairness definitions, and comes with minimal overhead. Furthermore, we show that it is competitive with standard baselines over various datasets including ones used in natural language processing and computer vision. FairGrad is available as a PyPI package at - https://pypi.org/project/fairgrad
Submitted: Jun 22, 2022