Paper ID: 2206.11759
What makes you, you? Analyzing Recognition by Swapping Face Parts
Claudio Ferrari, Matteo Serpentoni, Stefano Berretti, Alberto Del Bimbo
Deep learning advanced face recognition to an unprecedented accuracy. However, understanding how local parts of the face affect the overall recognition performance is still mostly unclear. Among others, face swap has been experimented to this end, but just for the entire face. In this paper, we propose to swap facial parts as a way to disentangle the recognition relevance of different face parts, like eyes, nose and mouth. In our method, swapping parts from a source face to a target one is performed by fitting a 3D prior, which establishes dense pixels correspondence between parts, while also handling pose differences. Seamless cloning is then used to obtain smooth transitions between the mapped source regions and the shape and skin tone of the target face. We devised an experimental protocol that allowed us to draw some preliminary conclusions when the swapped images are classified by deep networks, indicating a prominence of the eyes and eyebrows region. Code available at https://github.com/clferrari/FacePartsSwap
Submitted: Jun 23, 2022