Paper ID: 2206.12558

FastBVP-Net: a lightweight pulse extraction network for measuring heart rhythm via facial videos

Jialiang Zhuang, Yuheng Chen, Yun Zhang, Xiujuan Zheng

Remote photoplethysmography (rPPG) is an attractive camera-based health monitoring method that can measure the heart rhythm from facial videos. Many well-established deep-learning models have been reported to measure heart rate (HR) and heart rate variability (HRV). However, most of these models usually require a 30-second facial video and enormous computational resources to obtain accurate and robust results, which significantly limits their applications in real-world scenarios. Hence, we propose a lightweight pulse extraction network, FastBVP-Net, to quickly measure heart rhythm via facial videos. The proposed FastBVP-Net uses a multi-frequency mode signal fusion (MMSF) mechanism to characterize the different modes of the raw signals in a decompose module and reconstruct the blood volume pulse (BVP) signal under a complex noise environment in a compose module. Meanwhile, an oversampling training scheme is used to solve the over-fitting problem caused by the limitations of the datasets. Then, the HR and HRV can be estimated based on the extracted BVP signals. Comprehensive experiments are conducted on the benchmark datasets to validate the proposed FastBVP-Net. For intra-dataset and cross-dataset testing, the proposed approach achieves better performance for HR and HRV estimation from 30-second facial videos with fewer computational burdens than the current well-established methods. Moreover, the proposed approach also achieves competitive results from 15-second facial videos. Therefore, the proposed FastBVP-Net has the potential to be applied in many real-world scenarios with shorter videos.

Submitted: Jun 25, 2022