Paper ID: 2206.13669
Studying Generalization Through Data Averaging
Carlos A. Gomez-Uribe
The generalization of machine learning models has a complex dependence on the data, model and learning algorithm. We study train and test performance, as well as the generalization gap given by the mean of their difference over different data set samples to understand their ``typical" behavior. We derive an expression for the gap as a function of the covariance between the model parameter distribution and the train loss, and another expression for the average test performance, showing test generalization only depends on data-averaged parameter distribution and the data-averaged loss. We show that for a large class of model parameter distributions a modified generalization gap is always non-negative. By specializing further to parameter distributions produced by stochastic gradient descent (SGD), along with a few approximations and modeling considerations, we are able to predict some aspects about how the generalization gap and model train and test performance vary as a function of SGD noise. We evaluate these predictions empirically on the Cifar10 classification task based on a ResNet architecture.
Submitted: Jun 28, 2022