Paper ID: 2206.15177

A note on large deviations for interacting particle dynamics for finding mixed equilibria in zero-sum games

Viktor Nilsson, Pierre Nyquist

Finding equilibria points in continuous minimax games has become a key problem within machine learning, in part due to its connection to the training of generative adversarial networks. Because of existence and robustness issues, recent developments have shifted from pure equilibria to focusing on mixed equilibria points. In this note we consider a method proposed by Domingo-Enrich et al. for finding mixed equilibria in two-layer zero-sum games. The method is based on entropic regularisation and the two competing strategies are represented by two sets of interacting particles. We show that the sequence of empirical measures of the particle system satisfies a large deviation principle as the number of particles grows to infinity, and how this implies convergence of the empirical measure and the associated Nikaid\^o-Isoda error, complementing existing law of large numbers results.

Submitted: Jun 30, 2022