Paper ID: 2207.01164

Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations

Tianlong Chen, Peihao Wang, Zhiwen Fan, Zhangyang Wang

Neural Radiance Field (NeRF) regresses a neural parameterized scene by differentially rendering multi-view images with ground-truth supervision. However, when interpolating novel views, NeRF often yields inconsistent and visually non-smooth geometric results, which we consider as a generalization gap between seen and unseen views. Recent advances in convolutional neural networks have demonstrated the promise of advanced robust data augmentations, either random or learned, in enhancing both in-distribution and out-of-distribution generalization. Inspired by that, we propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training. Particularly, our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline with physical grounds, including (1) the input coordinates, to simulate imprecise camera parameters at image capture; (2) intermediate features, to smoothen the intrinsic feature manifold; and (3) pre-rendering output, to account for the potential degradation factors in the multi-view image supervision. Extensive results demonstrate that Aug-NeRF effectively boosts NeRF performance in both novel view synthesis (up to 1.5dB PSNR gain) and underlying geometry reconstruction. Furthermore, thanks to the implicit smooth prior injected by the triple-level augmentations, Aug-NeRF can even recover scenes from heavily corrupted images, a highly challenging setting untackled before. Our codes are available in https://github.com/VITA-Group/Aug-NeRF.

Submitted: Jul 4, 2022