Paper ID: 2207.04512
Learning-based Monocular 3D Reconstruction of Birds: A Contemporary Survey
Seyed Mojtaba Marvasti-Zadeh, Mohammad N. S. Jahromi, Javad Khaghani, Devin Goodsman, Nilanjan Ray, Nadir Erbilgin
In nature, the collective behavior of animals, such as flying birds is dominated by the interactions between individuals of the same species. However, the study of such behavior among the bird species is a complex process that humans cannot perform using conventional visual observational techniques such as focal sampling in nature. For social animals such as birds, the mechanism of group formation can help ecologists understand the relationship between social cues and their visual characteristics over time (e.g., pose and shape). But, recovering the varying pose and shapes of flying birds is a highly challenging problem. A widely-adopted solution to tackle this bottleneck is to extract the pose and shape information from 2D image to 3D correspondence. Recent advances in 3D vision have led to a number of impressive works on the 3D shape and pose estimation, each with different pros and cons. To the best of our knowledge, this work is the first attempt to provide an overview of recent advances in 3D bird reconstruction based on monocular vision, give both computer vision and biology researchers an overview of existing approaches, and compare their characteristics.
Submitted: Jul 10, 2022