Paper ID: 2207.07073

Efficient spike encoding algorithms for neuromorphic speech recognition

Sidi Yaya Arnaud Yarga, Jean Rouat, Sean U. N. Wood

Spiking Neural Networks (SNN) are known to be very effective for neuromorphic processor implementations, achieving orders of magnitude improvements in energy efficiency and computational latency over traditional deep learning approaches. Comparable algorithmic performance was recently made possible as well with the adaptation of supervised training algorithms to the context of SNN. However, information including audio, video, and other sensor-derived data are typically encoded as real-valued signals that are not well-suited to SNN, preventing the network from leveraging spike timing information. Efficient encoding from real-valued signals to spikes is therefore critical and significantly impacts the performance of the overall system. To efficiently encode signals into spikes, both the preservation of information relevant to the task at hand as well as the density of the encoded spikes must be considered. In this paper, we study four spike encoding methods in the context of a speaker independent digit classification system: Send on Delta, Time to First Spike, Leaky Integrate and Fire Neuron and Bens Spiker Algorithm. We first show that all encoding methods yield higher classification accuracy using significantly fewer spikes when encoding a bio-inspired cochleagram as opposed to a traditional short-time Fourier transform. We then show that two Send On Delta variants result in classification results comparable with a state of the art deep convolutional neural network baseline, while simultaneously reducing the encoded bit rate. Finally, we show that several encoding methods result in improved performance over the conventional deep learning baseline in certain cases, further demonstrating the power of spike encoding algorithms in the encoding of real-valued signals and that neuromorphic implementation has the potential to outperform state of the art techniques.

Submitted: Jul 14, 2022