Paper ID: 2207.07311
Towards Privacy-Preserving Person Re-identification via Person Identify Shift
Shuguang Dou, Xinyang Jiang, Qingsong Zhao, Dongsheng Li, Cairong Zhao
Recently privacy concerns of person re-identification (ReID) raise more and more attention and preserving the privacy of the pedestrian images used by ReID methods become essential. De-identification (DeID) methods alleviate privacy issues by removing the identity-related of the ReID data. However, most of the existing DeID methods tend to remove all personal identity-related information and compromise the usability of de-identified data on the ReID task. In this paper, we aim to develop a technique that can achieve a good trade-off between privacy protection and data usability for person ReID. To achieve this, we propose a novel de-identification method designed explicitly for person ReID, named Person Identify Shift (PIS). PIS removes the absolute identity in a pedestrian image while preserving the identity relationship between image pairs. By exploiting the interpolation property of variational auto-encoder, PIS shifts each pedestrian image from the current identity to another with a new identity, resulting in images still preserving the relative identities. Experimental results show that our method has a better trade-off between privacy-preserving and model performance than existing de-identification methods and can defend against human and model attacks for data privacy.
Submitted: Jul 15, 2022