Paper ID: 2207.07493

Communication-Efficient Diffusion Strategy for Performance Improvement of Federated Learning with Non-IID Data

Seyoung Ahn, Soohyeong Kim, Yongseok Kwon, Joohan Park, Jiseung Youn, Sunghyun Cho

Federated learning (FL) is a novel learning paradigm that addresses the privacy leakage challenge of centralized learning. However, in FL, users with non-independent and identically distributed (non-IID) characteristics can deteriorate the performance of the global model. Specifically, the global model suffers from the weight divergence challenge owing to non-IID data. To address the aforementioned challenge, we propose a novel diffusion strategy of the machine learning (ML) model (FedDif) to maximize the FL performance with non-IID data. In FedDif, users spread local models to neighboring users over D2D communications. FedDif enables the local model to experience different distributions before parameter aggregation. Furthermore, we theoretically demonstrate that FedDif can circumvent the weight divergence challenge. On the theoretical basis, we propose the communication-efficient diffusion strategy of the ML model, which can determine the trade-off between the learning performance and communication cost based on auction theory. The performance evaluation results show that FedDif improves the test accuracy of the global model by 10.37% compared to the baseline FL with non-IID settings. Moreover, FedDif improves the number of consumed sub-frames by 1.28 to 2.85 folds to the latest methods except for the model compression scheme. FedDif also improves the number of transmitted models by 1.43 to 2.67 folds to the latest methods.

Submitted: Jul 15, 2022