Paper ID: 2207.08309
CULT: Continual Unsupervised Learning with Typicality-Based Environment Detection
Oliver Daniels-Koch
We introduce CULT (Continual Unsupervised Representation Learning with Typicality-Based Environment Detection), a new algorithm for continual unsupervised learning with variational auto-encoders. CULT uses a simple typicality metric in the latent space of a VAE to detect distributional shifts in the environment, which is used in conjunction with generative replay and an auxiliary environmental classifier to limit catastrophic forgetting in unsupervised representation learning. In our experiments, CULT significantly outperforms baseline continual unsupervised learning approaches. Code for this paper can be found here: https://github.com/oliveradk/cult
Submitted: Jul 17, 2022