Paper ID: 2207.08942

Implicit Regularization with Polynomial Growth in Deep Tensor Factorization

Kais Hariz, Hachem Kadri, Stéphane Ayache, Maher Moakher, Thierry Artières

We study the implicit regularization effects of deep learning in tensor factorization. While implicit regularization in deep matrix and 'shallow' tensor factorization via linear and certain type of non-linear neural networks promotes low-rank solutions with at most quadratic growth, we show that its effect in deep tensor factorization grows polynomially with the depth of the network. This provides a remarkably faithful description of the observed experimental behaviour. Using numerical experiments, we demonstrate the benefits of this implicit regularization in yielding a more accurate estimation and better convergence properties.

Submitted: Jul 18, 2022