Paper ID: 2207.08953

Residual and Attentional Architectures for Vector-Symbols

Wilkie Olin-Ammentorp Maxim Bazhenov

Vector-symbolic architectures (VSAs) provide methods for computing which are highly flexible and carry unique advantages. Concepts in VSAs are represented by 'symbols,' long vectors of values which utilize properties of high-dimensional spaces to represent and manipulate information. In this new work, we combine efficiency of the operations provided within the framework of the Fourier Holographic Reduced Representation (FHRR) VSA with the power of deep networks to construct novel VSA based residual and attention-based neural network architectures. Using an attentional FHRR architecture, we demonstrate that the same network architecture can address problems from different domains (image classification and molecular toxicity prediction) by encoding different information into the network's inputs, similar to the Perceiver model. This demonstrates a novel application of VSAs and a potential path to implementing state-of-the-art neural models on neuromorphic hardware.

Submitted: Jul 18, 2022