Paper ID: 2207.09747
Transfer Learning of wav2vec 2.0 for Automatic Lyric Transcription
Longshen Ou, Xiangming Gu, Ye Wang
Automatic speech recognition (ASR) has progressed significantly in recent years due to the emergence of large-scale datasets and the self-supervised learning (SSL) paradigm. However, as its counterpart problem in the singing domain, the development of automatic lyric transcription (ALT) suffers from limited data and degraded intelligibility of sung lyrics. To fill in the performance gap between ALT and ASR, we attempt to exploit the similarities between speech and singing. In this work, we propose a transfer-learning-based ALT solution that takes advantage of these similarities by adapting wav2vec 2.0, an SSL ASR model, to the singing domain. We maximize the effectiveness of transfer learning by exploring the influence of different transfer starting points. We further enhance the performance by extending the original CTC model to a hybrid CTC/attention model. Our method surpasses previous approaches by a large margin on various ALT benchmark datasets. Further experiments show that, with even a tiny proportion of training data, our method still achieves competitive performance.
Submitted: Jul 20, 2022